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1. INTRODUCTION

The current engineering systems present a wide range of non-linear phenomena. The
knowledge of their dynamic characteristics is an important step in systems design and
control. A simple non-linear system of single degree of freedom may present multiple
solutions, jumps in the response, limit cycles and intermittence (chaos) [1].

A non-linear phenomenon present in many engineering mechanisms and machines is the
dry friction among contact surfaces. The characteristics of the friction produce two e!ects in
mechanical systems: the energy dissipation and self-excitation e!ects. Examples of self-
excitation appear in the motion of linear guides and articulations of positioning
mechanisms, in many brake systems and couplings for friction. The self-excitation occurs in
many engineering systems where the friction forces have signi"cant in#uence on the system
operation, hence the dry friction has been the object of many experimental investigations.
Mathematical models have been proposed to study the static and dynamic properties of dry
friction [2}7].

A class of systems which presents an interaction phenomenon due to dry friction is the
motion or power transmission in machines which use #exible elements such as tracks or
belts. The belt transmits the motion between pulleys or interacts with other mechanisms
through the contact of its surface. An example of this class of systems is a mass
block}belt}motor system. The analysis of the non-linear dynamics of such systems became
fundamental for the solution of the engineering problems which have to do with the control
of vibrations for functionality purposes or structural integrity or for environmental comfort
due to noise emission. Therefore, several scienti"c investigations on the interaction
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Figure 1. Mechanical system with energy source: mass block}belt}motor system.
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phenomenon have been accomplished with the objective to develop new design and control
techniques [3}7].

In the present work, a mass block}belt}motor system is analyzed. Simulation results of
two problems of self-excited oscillations by an interaction force are presented and
compared. The "rst considers the so-called ideal problem and the other the non-ideal
problem [8]. In the ideal problem, the excitation source is assumed to be a constant or
a time function whereas in the non-ideal problem the self-excited system is assumed to be
dependent on the properties of its power supply. The latter may be described as an
autonomous system. In both problems, the dry friction force is the force responsible for the
self-excitation e!ect. The dry friction model adopted considers the interaction phenomenon
from the point of view of engineering application.

2. SELF-EXCITED VIBRATING SYSTEM

Consider the mass block}belt system shown in Figure 1. The transference of energy
between the contact of the belt and an oscillating block is due to the friction. The oscillating
mass block has its motion damped or excited by the friction force. In the steady state
regime, if only the dynamic friction relative to the sliding is considered the motion presents
three di!erent situations which are dependent on the relative velocity between the mass
block and the belt: "rst, the block motion is in the opposite direction of the belt motion,
when the e!ect of damping takes place, second, the direction is the same, but the mass block
moves faster than the belt and again the e!ect of damping takes place and, "nally, the mass
block moves slower than the belt and the self-excitation e!ect takes place. The mass block
oscillates with limited amplitude as the amount of energy drawn from the oscillating system
for the friction and the amount of energy given to the oscillating system (self-excitation
e!ect) are equivalent during a cycle [2]. When the mass block velocity, during the
oscillating cycle, becomes equal to the belt velocity, the phenomenon of static friction force
in the contact called no-sliding or stick occurs. The alternation between the sliding and
no-sliding modes is a characteristic of the system motion which generates a complex
interaction belt}mass block. When the e!ect of the static and dynamic friction is considered
and the velocity of the mass block is the same as the belt, the phenomenon of no-sliding or
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stick occurs and the oscillating system is excited or damped by the static friction with larger
intensity, because the static friction force can reach larger values than the dynamic friction
force. As the e!ect of damping is associated with a motion opposing force, the sliding
(dynamic mode) is the main mode during the motion damping, which involves smaller
values of the friction force than when in the non-sliding mode (static mode). On the other
hand, the excitation e!ect presents the contribution of both friction forces for a longer time,
in the sliding and non-sliding modes.

A number of works on the theory of oscillations with self-excitation exists in the
literature. The self-excitation appears in cases when the oscillator possesses a non-linear
behavior dependent on damping forces, that is, the damping force tends to increase the
amplitude of the oscillations when they present a small amplitude and tends to decrease
them when they present a large amplitude. A possible steady state motion is found when the
system gains energy during part of the cycle and loses energy during the remaining part of
the cycle, in such a way that at the end of each cycle the net energy is null [9]. Several
authors studied this type of problem. In Nayfeh and Mook [10], and Nayfeh [11],
self-excited oscillations were studied by perturbation methods. A good revision of this
problem class can be found in Schmidt and Tondl [12]. An older text, even so of good
quality and comprehensible, is found in Stoker [13].

2.1. SELF-EXCITED SYSTEMS WITH A LIMITED POWER SUPPLY

In engineering problems, in general, the possible in#uence of the oscillating system
motion on its power supply or external excitation is disregarded. However, in many
practical problems of engineering it was observed that the excitation or its source of energy
is in#uenced by the response of the system. This invalidates the traditional formulation of
the theory of oscillations and a more realistic formulation that takes into account the
interaction among the state variables of the source of energy or external excitation and the
state variables of the mechanical system is needed [8,14]. The traditional model dynamic
system is a denominated system with an ideal source of energy, where the existence of the
interaction phenomenon between the dynamical system and source of energy is not
considered. In this way, the adoption of another model based on the concept of non-ideal
dynamic system, that is, a dynamic system with a source of energy of limited power
(non-ideal source) is required.

The non-ideal machine is a concept that depends fundamentally on some of its
characteristics, for example, the structure that supports it. A classic example of a non-ideal
system is a #exible structure (for example, an embedded beam or a simple portico) on which
is mounted a motor with an unbalanced shaft, with an energy source of limited power. In
the mentioned case, the motion of the system structure due to its own #exibility, a!ects the
working conditions of the machine. In consequence of the interaction between the #exible
structure and the excitation source in this type of dynamic system the following e!ects may
be observed: (1) discontinuities or abrupt jumps in the amplitude versus frequency curve
and di!erent curves of amplitude versus frequency when increasing or decreasing the motor
velocity not predicted by the theory of oscillation; (2) dependence between the e!ects
mentioned above and the characteristics of the motor.

Therefore, it has been noticed that the non-ideal dynamic systems possess additional
degrees of freedom depending on the number of sources of limited power interacting in the
system, when compared to the corresponding ideal system. A system with a limited power
supply is characterized by the inability to operate in close velocities to the critical velocities
(resonance) and, also, it has di$culty in accelerating and/or decelerating during the passage
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through the critical velocity (resonance), when a large amplitude in the transient response of
the system occurs. This kind of problem was considered in Yamakawa and Murakani [15];
an optimization method of the operation curves of rotating shaft machine with source
of a limited power was presented. This phenomenon, known in the literature as
the Sommerfeld e!ect, in honor of the "rst researcher to observe it, is also described in
Kononenko [14]. The vibrations control of a non-ideal dynamic system during the passage
through resonance was achieved, experimentally, by Dimentberg et al. [16],
through momentary alteration of the rigidity of the system and for Balthazar et al. [17]
using an optimization technique. A complete and comprehensive review of di!erent
approaches to non-ideal problems, up to 1979, is given in Nayfeh and Mook [10] and more
recently in Balthazar et al. [8]. The topological aspects of the parametric and
non-parametric vibrations of some models given in Kononenko [14] were analyzed in
Balthazar et al. [17].

3. THE ANALYZED PROBLEM

The "rst observations made on the properties of the dry friction indicated that the friction
force was proportional to the normal contact force. Coulomb proposed the concept of
a limit value for the static friction force, which says that the external forces applied to a body
in relative rest will not cause sliding until the limit value is surpassed. The limit value for
static friction force is larger than the maximum value of the dynamic friction force that
occurs during the relative sliding over the contact surfaces. From this were de"ned the static
friction and dynamic friction coe$cients which relate the value of the friction force
developed to a function of the normal contact force. The consideration that the friction
force during the sliding is almost independent of the relative velocity of sliding is known as
the Coulomb friction law. For many situations, this representation is considered a good
model for the phenomenon of friction during sliding. In special cases the Coulomb friction
model presents limitations [2}5].

3.1. SYSTEM EQUATIONS FOR THE NON-IDEAL PROBLEM

In the present work, the analyzed non-ideal problem is described by the mass block}belt
dynamical system and the rotational motion equations.

The motion equation of the mass block}belt system is
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interaction function which represents the static and dynamic friction e!ects and is as in [2].
After some manipulations, one obtains
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Figure 2. Torque characteristic curves of the DC motor for a given applied voltage, for torque constant
K

T
"0)1; 0)2; 0)3 and 0)4.
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The rotational motion equation which describes the interaction between the power
source and the friction force is

Iu( "¹
Motor

!rF
Atrito

(3)

where I is the inertia moment of the system rotate part; u( the angular acceleration of the
power source (motor); ¹

Motor
the mechanical torque, described by the characteristic curves

given in Figure 2.
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3.2. SYSTEM EQUATIONS FOR THE IDEAL PROBLEM

In the ideal problem analyzed, the system of equations is formed considering equilibrium
between the motor torque and the required torque for the oscillating block}belt system.
However, the angular acceleration is null and the angular velocity is constant. Then the
ideal system model may be represented by the state space equation system
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4. NUMERICAL SIMULATION RESULTS

In this section, we shall analyze the dynamical system represented by equations (4). The
state variables are de"ned as x

1
"displacement, x

2
"velocity, x

3
"motor angular



Figure 3. Phase portrait x
2
}x

1
of the ideal case without external excitation ( f

0
"0) for (a) v

B
"0)4 m/s, (b)

v
B
"0)8 m/s and (c) v

B
"1)6 m/s.
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displacement, x
4
"motor angular velocity. The numerical simulation results presented

were obtained using the Matlab-SimulinkTM from Mathworks'.
In Figure 3, results of the self-excited ideal mass block}belt system are presented for the

phase portrait velocity}displacement of the block x
2
}x

1
for the di!erent belt velocity values

v
B
"0)4, 0)8, 1)6 m/s. For belt velocities from 0)4 to 0)8 m/s a transition path can be

observed between the sliding (slip) and the no-sliding (stick) modes. The occurrence of the
no-sliding (stick) between the belt and the mass block is evidenced by the horizontal straight
line in the phase portrait.



Figure 4. Frequency responses for the non-ideal case with external excitation for K
T
"0)4, v

B
+0)4 m/s and

f
0
"10 N/kg. (a) Displacement versus frequency ratio, (b) velocity versus frequency ratio and (c) angular velocity

versus frequency ratio.
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For values of the belt velocity below 0)8 m/s, the relative velocity v
Rel

between mass block
and belt change of sign and the transition response is a!ected by the sliding mode (slip) and
the no-sliding mode (stick). When the belt velocity surpasses the value 0)8 m/s, the dominant
mode is sliding (slip) and the system undergoes a limit cycle as shown in Figure 3(c).



Figure 5. Frequency responses for the non-ideal case with external excitation for K
T
"0)1, v

B
+0)4 m/s and

f
0
"10 N/kg. (a) Displacement versus frequency ratio, (b) velocity versus frequency ratio and (c) angular velocity

versus frequency ratio.
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To analyze the behavior of the non-ideal dynamical system, when the oscillating mass
block is excited by an harmonic force, two set of results were obtained, one for a torque
constant K

T
"0)4 and another for torque constant K

T
"0)1. In both cases, the same

applied voltage values are used. In each set frequency response results for the oscillating
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mass block displacement and velocity, the motor angular velocity, are shown. The results
for the torque constant K

T
"0)4 are presented in Figure 4 and the results for the torque

constant K
T
"0)1 in Figure 5. The results obtained for a constant torque K

T
"0)4,

representing an energy source with a high power to velocity range. The results showed that
Figure 6. (a) PoincareH section x
2
}x

1
, (b) phase portrait x

2
}x

1
and (c) associated FFT spectrum, (d) PoincareH

section x
4
}x

1
and (e) phase portrait of the angular velocity versus displacement (x

4
}x

1
) for u

E
/u

N
"1)87,

K
T
"0)1, v

B
+0)1 m/s, f

0
"7 N/kg and 4280 excitation periods.



Figure 6. Continued.
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for a constant torque K
T
"0)1, the oscillating system su!ers more in#uence from the energy

source. The interaction between the motor and the oscillating system is evidenced by
a non-constant angular velocity, as shown in Figures 4(c) and 5(c).

PoincareH sections and associated FFT spectra [18] were obtained to illustrate the
complexity of the system behavior under certain conditions. In Figures 6(a}c) are shown the
motion PoincareH sections of the system obtained for a case with 4280 excitation periods, the
associated phase portrait and FFT spectrum for a frequency ratio u

E
/u

N
"1)87. Figures

6(d}e) show the PoincareH section for the displacement and motor angular velocity and the
associated phase portrait.

Finally, we note the non-periodic behavior of the system for given parameters for
a frequency ratio u

E
/u

N
"1)87, by the PoincareH sections and the FFT spectra shown in

Figure 6.

5. SOME CONCLUDING REMARKS

This paper analyzes the behavior of a non-ideal self-excited vibrating system. The main
results obtained are on the interaction between the system power supply and friction-driven
vibrations.

The occurrence of no-sliding (stick) between the belt and the mass block is evidenced by
horizontal straight lines in the phase portrait. When the belt velocity surpasses a certain
value, the dominant mode is the sliding (slip) and the system undergoes a limit cycle.
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The dynamical in#uence of the motor on the oscillating system is evidenced by the
angular velocity response. From the investigations carried out it was possible to observe the
power supply in#uence on the vibrating system along with non-periodic motions with
chaotic characteristic.

The results obtained here are the "rst ones in the study of non-ideal friction-driven
vibration problems. The research in progress involves the study of other engineering aspects
of the problem which shall be presented later.
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